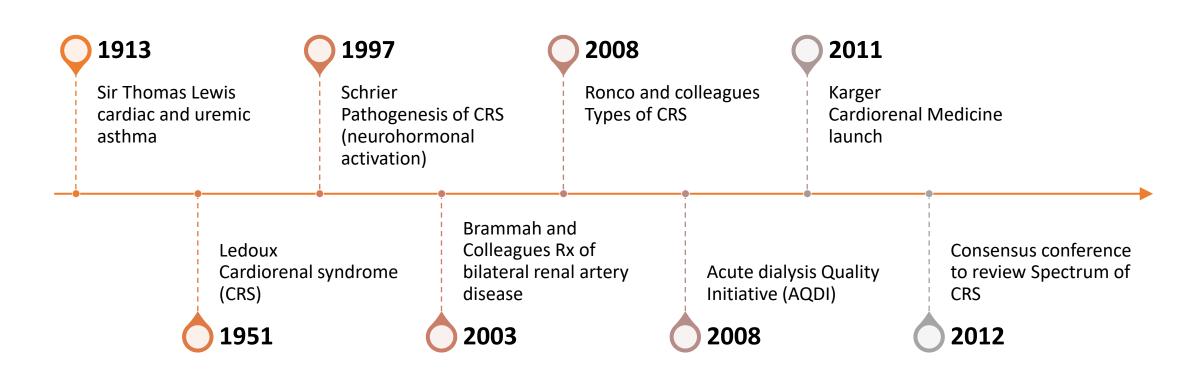
Cardiorenal Syndrome and Renal Protection: Fact Vs Fiction

Mrudula R Munagala, MD., FACC
Assistant Professor of Medicine
University of Miami Miller School of Medicine

NONE RELVANT TO THIS TALK


Disclosures

Objectives

- Definition
- Epidemiology of Cardiorenal syndrome
- Review of Classification of Cardiorenal syndrome
- Pathogenesis of Cardiorenal syndrome
- Practical implications of the management of Cardiorenal syndrome
- Limitations of current approach

1868: Moxon: First noted description of Interaction Heart and Kidney Disease

History and Timeline

Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc.

doi:10.1016/Lince.2008.07.05

STATE-OF-THE-ART PAPER

Cardiorenal Syndrome

Claudio Ronco, MD, Mikko Haapio, MD, Andrew A. House, MSc, MD, Nagesh Anavekar, MD, Rinaldo Bellomo, MD¶

Vicenza, Italy, Helsinki, Finland; London, Ontario, Canada; and Melbourne, Australia

European Heart Journal

European Heart Journal doi:10.1093/eurheartj/ehp507 CLINICAL RESEARCH

Cardio-renal syndromes: report from the consensus conference of the Acute Dialysis Quality Initiative

Claudio Ronco^{1,2*}, Peter McCullough³, Stefan D. Anker^{4,5}, Inder Anand⁶, Nadia Aspromonte⁷, Sean M. Bagshaw⁸, Rinaldo Bellomo⁹, Tomas Berl¹⁰, Ilona Bobek¹, Dinna N. Cruz^{1,2}, Luciano Daliento¹¹, Andrew Davenport¹², Mikko Haapio 13, Hans Hillege 14, Andrew A. House 15, Nevin Katz 16, Alan Maisel 17 Sunil Mankad¹⁸, Pierluigi Zanco¹⁹, Alexandre Mebazaa²⁰, Alberto Palazzuoli²¹, Federico Ronco¹¹, Andrew Shaw²², Geoff Sheinfeld²³, Sachin Soni^{1,24}, Giorgio Vescovo²⁵, Nereo Zamperetti²⁶, and Piotr Ponikowski²⁷ for the Acute Dialysis Quality Initiative (ADQI) consensus group

Nephrol Dial Transplant (2010) 25: 1416–1420

doi: 10.1093/ndt/gfq136

Advance Access publication 12 March 2010

Definition and classification of Cardio-Renal Syndromes: workgroup statements from the 7th ADQI Consensus Conference

Andrew A. House¹, Inder Anand², Rinaldo Bellomo³, Dinna Cruz⁴, Ilona Bobek⁴, Stefan D. Anker⁵, Nadia Aspromonte⁶, Sean Bagshaw⁷, Tomas Berl⁸, Luciano Daliento⁹, Andrew Davenport¹⁰, Mikko Haapio¹¹, Hans Hillege¹², Peter McCullough¹³, Nevin Katz¹⁴, Alan Maisel¹⁵, Sunil Mankad¹⁶, Pierluigi Zanco¹⁷, Alexandre Mebazaa¹⁸, Alberto Palazzuoli¹⁹, Federico Ronco⁹, Andrew Shaw²⁰, Geoff Sheinfeld²¹, Sachin Soni²², Giorgio Vescovo²³, Nereo Zamperetti²⁴, Piotr Ponikowski²⁵, Claudio Ronco⁴ and for the Acute Dialysis Quality Initiative (ADQI) consensus group

Blood Purif 2009;27:114-126 DOI: 10.1159/000167018

The Cardiorenal Syndrome

Claudio Ronco^a Chang-Yin Chionh^a Mikko Haapio^b Nagesh S. Anavekar^c Andrew House Rinaldo Bellomod

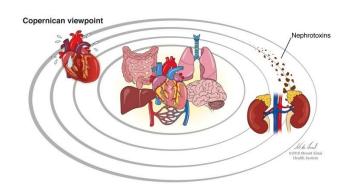
^aDepartment of Nephrology, Ospedale San Bortolo, Vicenza, Italy; ^bHUCH Meilahti Hospital, Division of Nephrology, Helsinki, Finland; Department of Cardiology, The Northern Hospital, and Department of Intensive Care, Austin Hospital, Melbourne, Vic., Australia; *London Health Sciences Centre, Division of Nephrology, London, Ont., Canada

Circulation. 2019;139:e840-e878.

DOI: 10.1161/CIR.0000000000000664

Circulation

AHA SCIENTIFIC STATEMENT


Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies

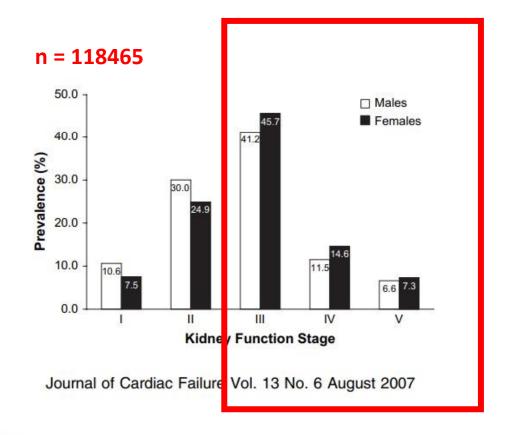
A Scientific Statement From the American Heart Association

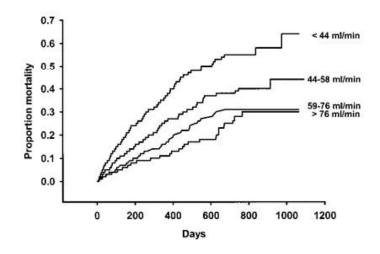
ABSTRACT: Cardiorenal syndrome encompasses a spectrum of disorders involving both the heart and kidneys in which acute or chronic dysfunction in 1 organ may induce acute or chronic dysfunction in the other organ. It represents the confluence of heart-kidney interactions across several interfaces. These include the hemodynamic cross-talk between the failing heart and the response of the kidneys and vice versa, as well as alterations in neurohormonal markers and inflammatory molecular signatures characteristic of its clinical

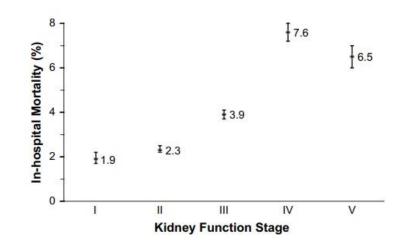
Janani Rangaswami, MD, Vice Chair Vivek Bhalla, MD, FAHA John E.A. Blair, MD Tara I. Chang, MD, MS Salvatore Costa, MD Krista L. Lentine, MD, PhD Edgar V. Lerma, MD, FAHA

Cardiorenal Syndrome (CRS)

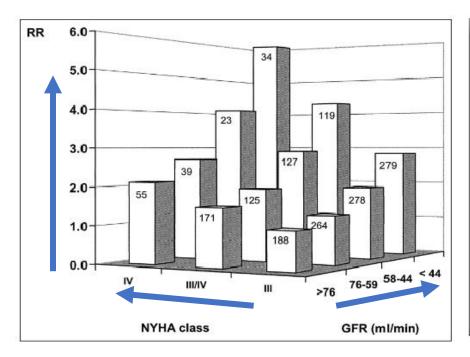
CRS encompasses spectrum of disorders involving both the heart and kidneys in which acute or chronic dysfunction of one organ may induce acute or chronic dysfunction of the other organ

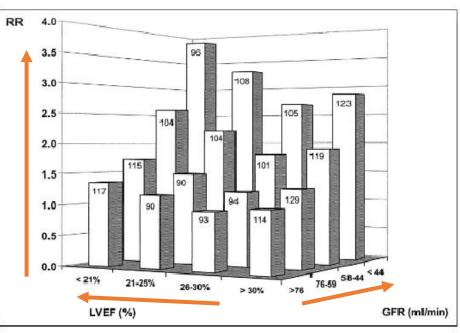

Coca S. Ptolemy and Copernicus Revisited. The complex Interplay between the Kidneys and Heart Failure. Clin J Am Soc Nephrol. 2018 Jun 7: 13(6): 825-828 Rangaswami J et al., Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies. A scientific Statement From the American Heart Association. Circulation. 2019; 139: e840-e878.


Renal dysfunction in HF Vs HF in CKD


- Acute Decompensated Heart Failure National Registry (ADHERE)
- 20-40% of patients hospitalized with Acute Decompensated Heart Failure (ADHF) are noted to have renal dysfunction
- NKF-KEEP examined > 100,000 individuals screened for kidney disease
 - HF Prevalence: 1.6% among eGFR > 120 Vs 14.9% with eGFR < 30
- The USRDS estimated that > 40% patients with CKD have HF Vs 18.5% of patients without CKD

Renal dysfunction in Heart Failure





Heywood, J Card Fail, 2007, 13:422 Hillege et, Circulation 2000; 102: 203

Renal Function Is independent Mortality Predictor

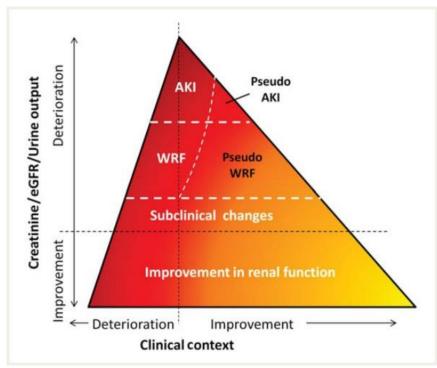
Changes in Kidney Function (AKI Vs WRF)

Stage	Serum creatinine	Urine output
1	1.5–1.9 times baseline OR ≥0.3 mg/dl (≥26.5 µmol/l) increase	< 0.5 ml/kg/h for 6–12 hours
2	2.0–2.9 times baseline	<0.5 ml/kg/h for ≥ 12 hours
3	3.0 times baseline OR Increase in serum creatinine to ≥4.0 mg/dl (≥353.6 µmol/l) OR Initiation of renal replacement therapy OR, In patients <18 years, decrease in eGFR to <35 ml/min per 1.73 m²	<0.3 ml/kg/h for ≥24 hours OR Anuria for ≥12 hours

Heart Fail Rev (2021) 26:487-496

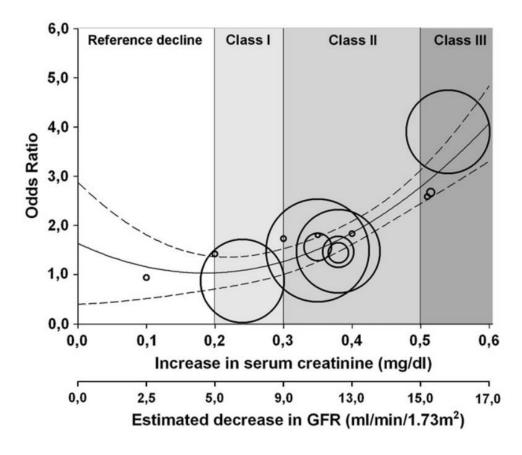
Stage	Serum creatinine	Glomerular filtration rate	Urine output (mL/kg)		
R: risk	1.5-fold increase	25% decrease	< 0.5 in 6 h		
I: injury	2-fold increase	50% decrease	< 0.5 in 12 h		
F: failure	3-fold increase or value ≥4 mg/dL	75% decrease	< 0.3 in 24 h (oliguria) or anuria for 12 h		
L: loss (of function)	Complete loss of renal function for ≥4 weeks, requiring dialysis				
E: end stage	Uremia or complete loss of	renal function for ≥ 3 mon	ths, requiring dialysis		

Risk Injury-Failure-Loss-End-Stage (RIFLE) Criteria

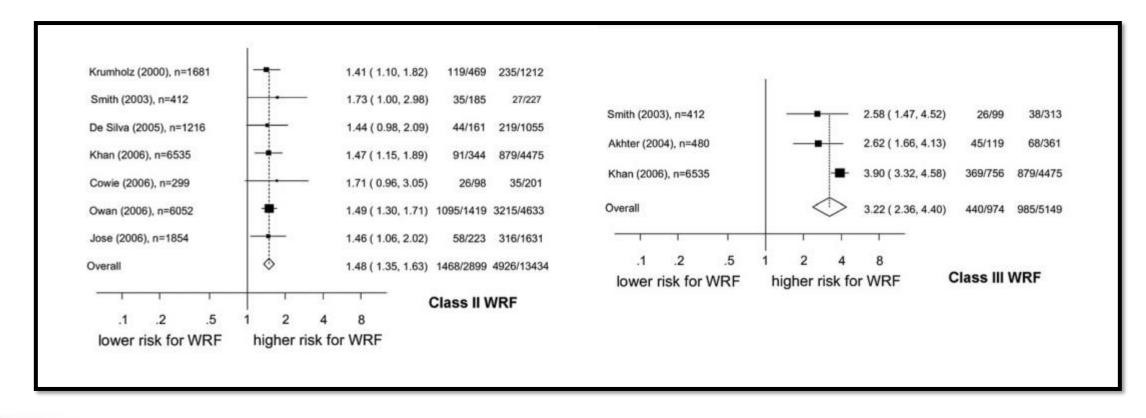


Worsening Renal Function

Study	General definition WRF	In Time	Stratified WRF	n Patients WRF	n Patients No WRF	Included in the Analysis a
Krumholz	>0.3 mg/dL increase*	During admission		469	1212	Class II WRF
Smith	Any increase*	During admission	>0.1 mg/dL increase* >0.2 mg/dL increase* >0.3 mg/dL increase* >0.4 mg/dL increase*	103 173 227 280	309 239 185 132	Class I WRF Class II WRF Class II WRF
Akhter	>0.5 mg/dL increase*	WRF Classification	Increa	ase in Serum Creatinir	ne Decrease	in eGFR
De Silva Khan	>0.3 mg/dL increase* A decrease in eGFR of O 5 mL·min·1.73 m	I (mild)	0.2 to	0.3 mg/dL	5 to 10 m	l/min/1.73m ²
Comit	> 0.2 ···· / II : ··········*	II (moderate)	0.3 to	0.5 mg/dL	11 to 15 r	nl/min/1.73m ²
Cowie Jose Owan	>0.3 mg/dL increase* >0.3 mg/dL increase* >0.3 mg/dL increase*	III (severe)	> 0.5	mg/dL	> 15 ml/n	nin/1.73m ²



Worsening Renal Function



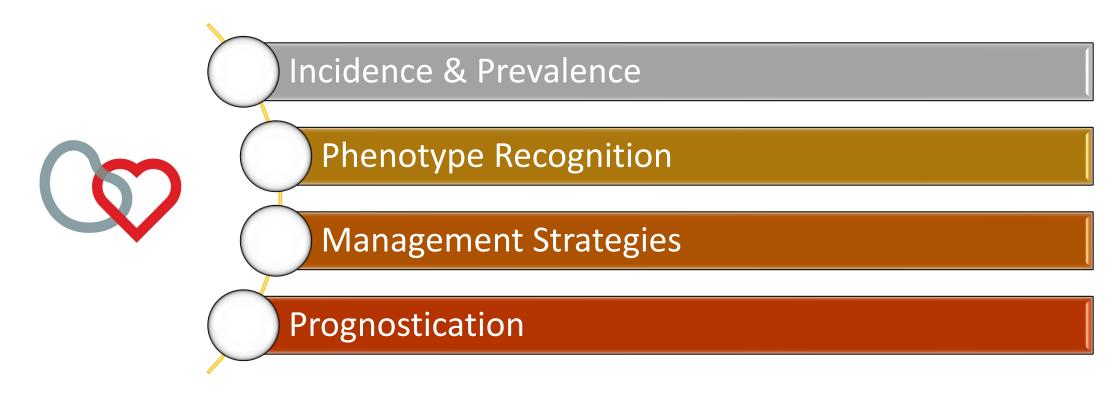
MiamiValves.org

Worsening Renal Function in Heart Failure

Damman K. J Card Failure 2007: 13: 599-608

Renal dysfunction in Heart Failure

- Renal dysfunction is independent risk factor for poor outcomes and all cause mortality in patients with Heart Failure
- Hospitalized HF patients with prolonged hospitalization, rehospitalization and death
 - Elevated serum creatinine on admission
 - Worsening creatinine during hospitalization



Classification of CRS

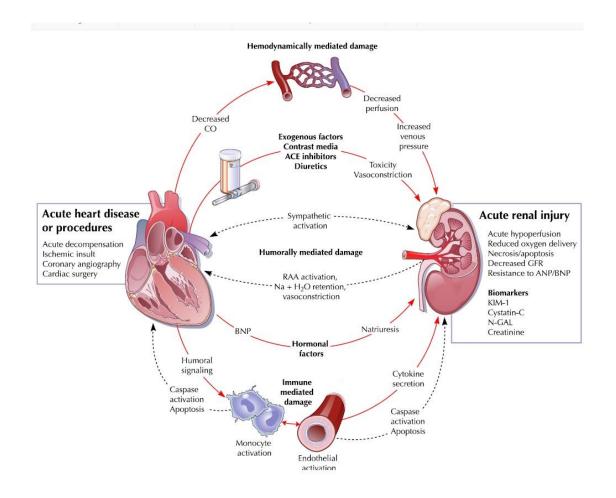
Phenotype	Nomenclat	menclature Description		on	Clinical Examples		
Type 1 CRS	Ronco et al Classification					HF resulting	
Type 2 CRS	Type 1	Acute C	Cardiorenal ACS, Car		diogenic Shock, ADHF		
Type 3 CRS	Type 2	Chronic	Cardiorenal	Chronic I	leart Failure		
Type 3 CN3	Type 3	Acute R	tenocardiac	Acute Re	nal Injury	es in uremia	
Type 4 CRS	Type 4	Chronic	Renocardiac	Chronic f	Renal Disease	athy	
Type 5 CRS	Type 5	Systemi	nic CardioRenal Sepsis, Non-Cardiogenic Shock		on-Cardiogenic Shock		
	Classification of CRS Based on the Consensus Conference of the Acute Dialysis Quality Initiative						

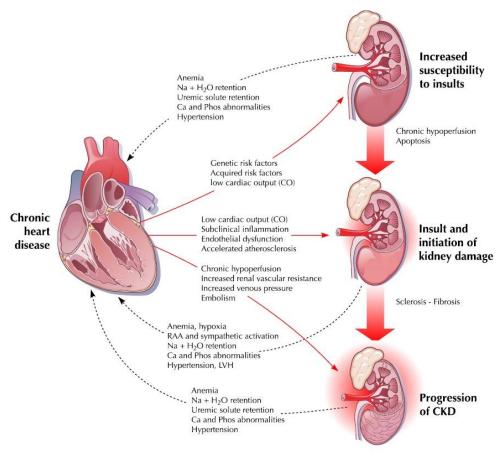
Significance of Renal dysfunction in Heart Failure

Incidence of Type I CRS

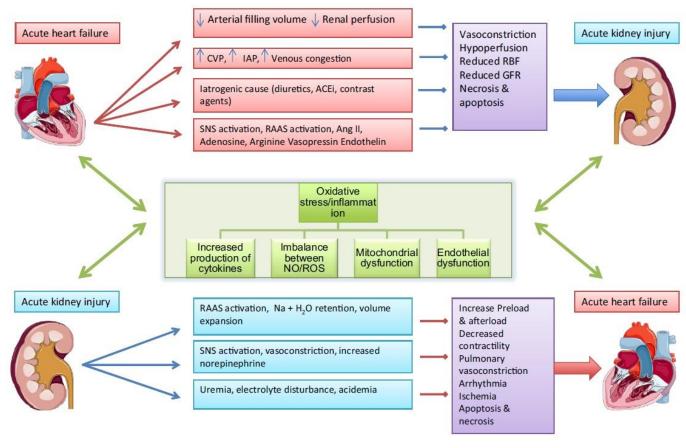
Acute Kidney Injury in Cardiorenal Syndrome Type 1 Patients: A Systematic Review and Meta-Analysis

Wim Vandenberghe^a Sofie Gevaert^b John A. Kellum^{d, e} Sean M. Bagshaw^f Harlinde Peperstraete^a Ingrid Herck^a Johan Decruyenaere^a Eric A.J. Hoste^{a, c, e}


Departments of ^aIntensive Care Medicine and ^bCardiology, Ghent University Hospital, Ghent University, Ghent, and ^cResearch Foundation-Flanders (FWO), Brussels, Belgium; ^dCentre for Critical Care Nephrology, University of Pittsburgh, and ^aThe Clinical Research, Investigation, and Systems Modelling of Acute Illness (CRISMA) Centre, Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pa., USA; FDivision of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alta., Canada

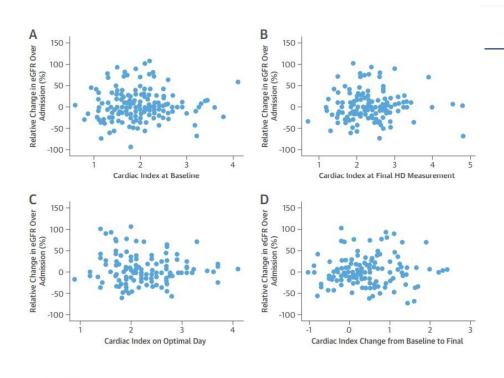

Cardiorenal Med 2016;6:116-128

DOI: 10.1159/000442300 Published online: December 19, 2015 © 2015 S. Karger AG, Basel 1664–3828/15/0062-0116\$39.50/0 www.karger.com/crm



CRS Type I & Type II

Cardiorenal and Renocardiac Syndrome


- → Increased CVP
- → Increased intraabdominal pressure
- → Reduced Cardiac output
- → Neurohormonal dysregulation
 - → RAAS activation
 - → SNS activation
 - → Adenosine/AVP
- → Oxidative stress
- → Inflammatory mediators
- → Renal failure related mechanisms

Kumar U et al. Cardiorenal Syndrome Pathophysiology. Cardiol Clin 2019; 37: 251-265

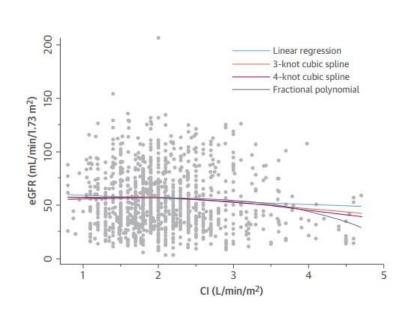
Driving Factor of Cardiorenal Syndrome

MiamiValves.org

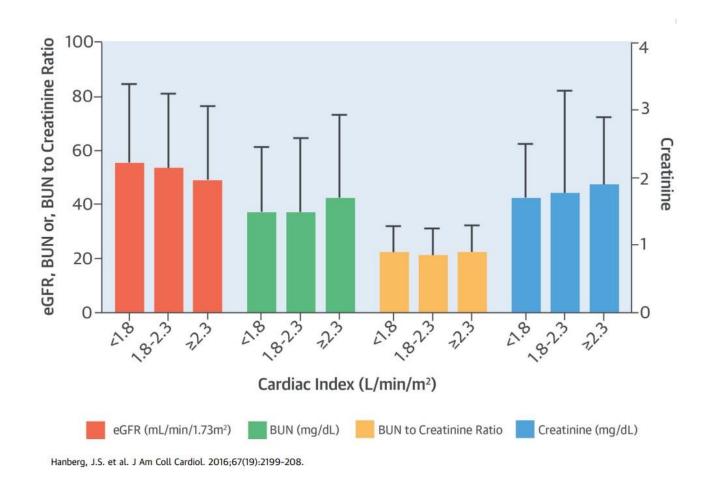
ORIGINAL INVESTIGATIONS

Reduced Cardiac Index Is Not the Dominant Driver of Renal Dysfunction in Heart Failure

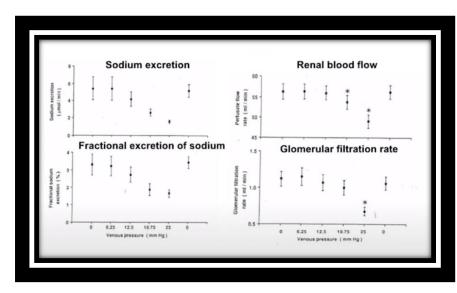
Jennifer S. Hanberg, BA, ^a Krishna Sury, MD, ^b F. Perry Wilson, MD, MSCE, ^{a,b,c} Meredith A. Brisco, MD, MSCE, ^d Tariq Ahmad, MD, MPH, ^b Jozine M. ter Maaten, MD, ^e J. Samuel Broughton, BS, ^a Mahlet Assefa, BS, ^a W.H. Wilson Tang, MD, ^f Chirag R. Parikh, MD, PhD, ^{a,b,c} Jeffrey M. Testani, MD, MTR^{a,b}

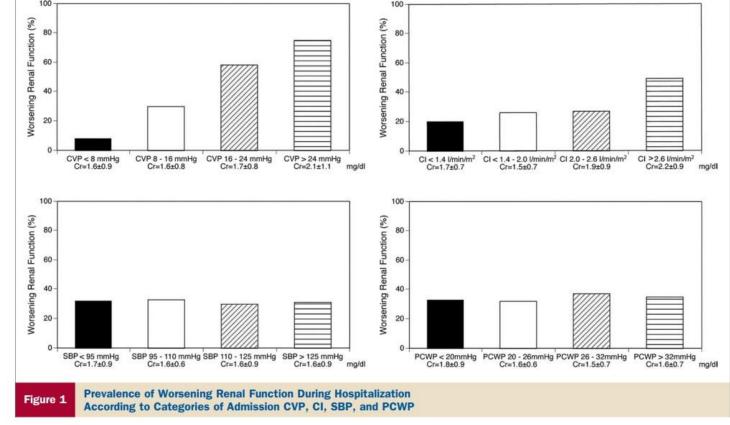

ABSTRACT

BACKGROUND It is widely believed that a reduced cardiac index (CI) is a significant contributor to renal dysfunction in patients with heart failure (HF). However, recent data have challenged this paradigm.

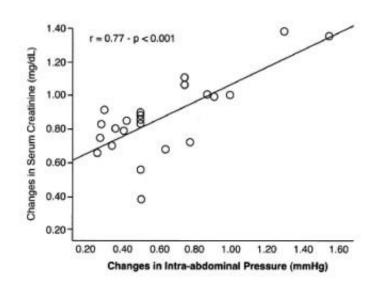

OBJECTIVES This study sought to determine the relationship between CI and renal function in a multicenter population of HF patients undergoing pulmonary artery catheterization (PAC).

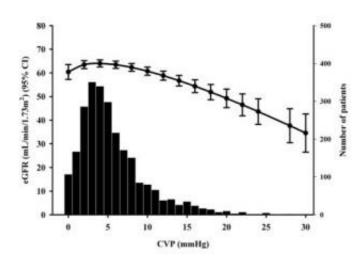
METHODS Patients undergoing PAC in either the randomized or registry portions of the ESCAPE (Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness) trial were included (n = 575). We evaluated associations between CI and renal function across multiple subgroups and assessed for nonlinear, threshold, and longitudinal relationships.


Cardiac index or output is not the driving factor



Hemodynamic determinants of WRF- ESCAPE



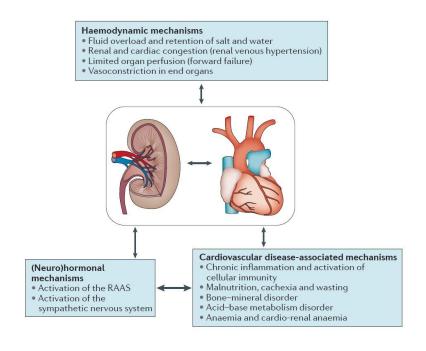


Mullens W et al., JACC 2009; 53: 589 Firth et al. Lancet 1988; 1:1033

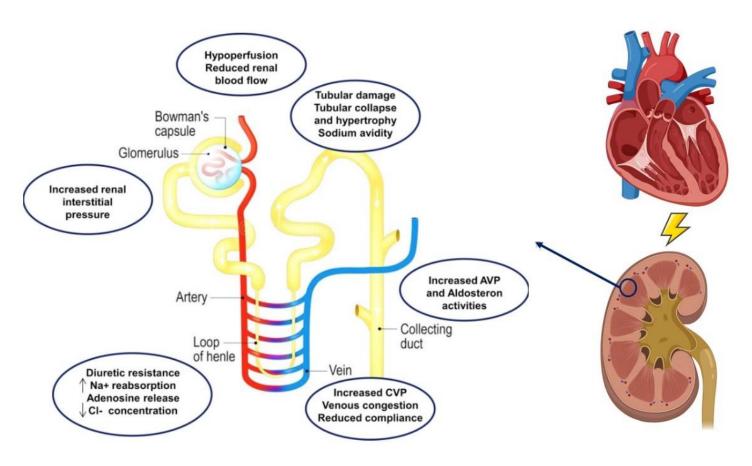
Abdominal Pressure – Contributions to CRS

Circulation June 15, 2010

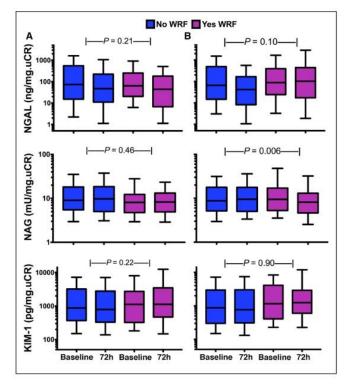
Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 62, No. 6, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.04.070


STATE-OF-THE-ART PAPER

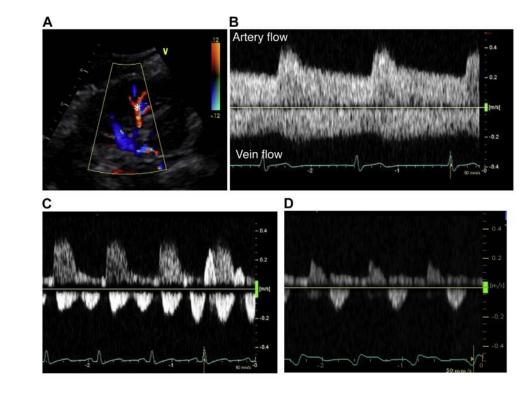
Abdominal Contributions to Cardiorenal Dysfunction in Congestive Heart Failure


Frederik H. Verbrugge, MD,*† Matthias Dupont, MD,* Paul Steels, MD,‡ Lars Grieten, PhD,*‡ Manu Malbrain, MD, PhD,§ W. H. Wilson Tang, MD,|| Wilfried Mullens, MD, PhD*‡ Genk, Diepenbeek, and Antwerp, Belgium; and Cleveland, Obio

Current pathophysiological models of congestive heart failure unsatisfactorily explain the detrimental link between congestion and cardiorenal function. Abdominal congestion (i.e., splanchnic venous and interstitial congestion) manifests in a substantial number of patients with advanced congestive heart failure, yet is poorly defined. Compromised capacitance function of the splanchnic vasculature and deficient abdominal lymph flow resulting in interstitial edema might both be implied in the occurrence of increased cardiac filling pressures and renal dysfunction. Indeed, increased intra-abdominal pressure, as an extreme marker of abdominal congestion, is evidence that alterations in the liver and spleen contribute to systemic congestion in heart failure. Finally, gutderived hormones might influence sodium homeostasis, whereas entrance of bowel toxins into the circulatory system, as a result of impaired intestinal barrier function secondary to congestion, might further depress cardiac as well as renal function. Those toxins are mainly produced by micro-organisms in the gut lumen, with presumably important alterations in advanced heart failure, especially when renal function is depressed. Therefore, in this stateof-the-art review, we explore the crosstalk between the abdomen, heart, and kidneys in congestive heart failure. This might offer new diagnostic opportunities as well as treatment strategies to achieve decongestion in heart failure, especially when abdominal congestion is present. Among those currently under investigation are paracentesis, ultrafiltration, peritoneal dialysis, oral sodium binders, vasodilator therapy, renal sympathetic denervation and agents targeting the gut microbiota. (J Am Coll Cardiol 2013;62:485-95) © 2013 by the American College of **Cardiology Foundation**


Renal Injury in Heart Failure

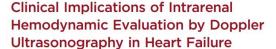
Biomarkers of Renal Injury in CRS


Rangaswami J et al., Circulation. 2019; 139: e840-e878 Ahmad T. Circulation 2018; 137: 2016-2028

Biomarkers	Characteristics/Site of Origin	Diagnostic Value	Prognostic Value
Cardiac biomarkers			·
cTn	Marker of myocardial injury	ACS	ACS, HF, CKD
BNP	Marker of myocardial stretch	HF, ACS, CRS	HF, CRS
sST2	Member of IL-1 family of receptors	***	HF, CRS
Galectin-3	β-Galactoside binding lectin (intracellular and extracellular)	17,2229	HF, CRS
Kidney biomarkers			
Biomarkers of glomerular integrity			r's
Serum creatinine	Skeletal muscle	AKI, CRS	HF, CRS
CysC	All nucleated cells	CRS	CRS
Albuminuria	Marker of glomerular integrity/PCT disruption	CRS	CRS
Biomarkers of tubular injury			
TIMP*IGFBP7	Involved in G1 cell cycle arrest; may stimulate renal epithelium in an autocrine and paracrine fashion and sensitize for upcoming insults	AKI	AKI recovery
Serum NGAL	25-kDa protein found in neutrophil granules; secreted by myocardium, renal tubules, activated immune cells, hepatocytes, lung, and colon	AKI	CRS
Urine NGAL	Loop of Henle, collecting ducts	AKI, CRS	CRS
NAG	PCT	CRS, AKI	CRS
KIM-1	Type 1 cell membrane glycoprotein expressed in regenerating PCT epithelium	AKI	CRS
IL-18	Cytokine mediating inflammation and AKI through the nuclear factor-κB pathway	AKI	CRS
L-FABP	Renal PCT	AKI	1272
H-FABP	Cardiomyocytes, distal tubule	HF, CRS	1000
Urine angiotensinogen	111	AKI, CRS	CRS
α-1 Microglobulin	Synthesized in liver; freely filtered through glomerular capillaries and reabsorbed by PCT	AKI	AKI recovery

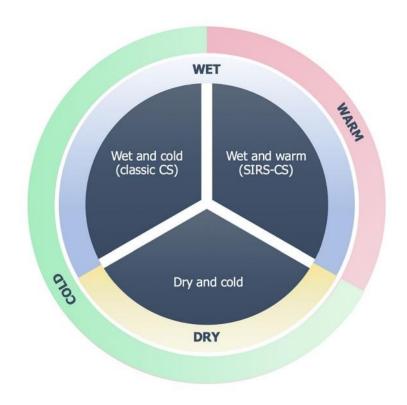
Investigations

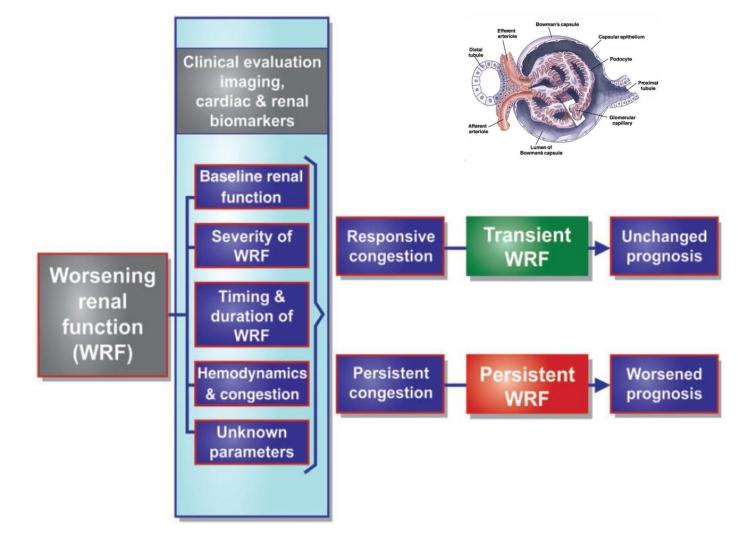
- Echocardiography
 - Right atrial Pressures
- Intrarenal Duplex US (IRD)
 - Interlobar vessels
 - Arterial resistance index
 - Venous impedance index
 - Intrarenal venous flow
- Measurement of IAP (intraabdominal Pressures)



JACC: HEART FAILURE

© 2016 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

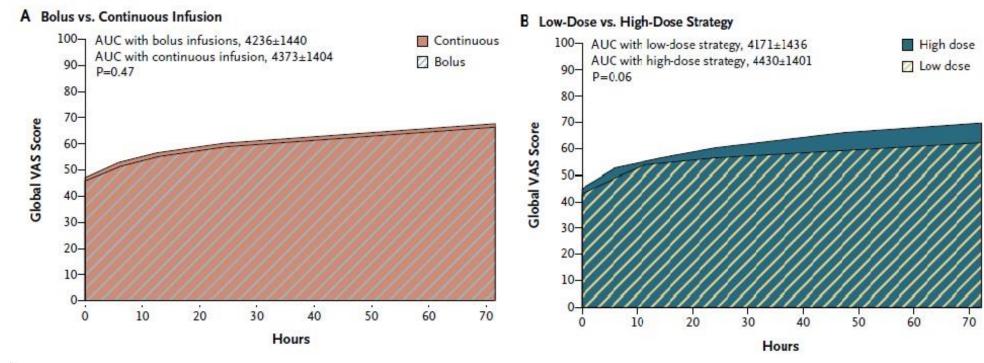

PUBLISHED BY ELSEVIER


VOL. 4, NO. 8, 2016 ISSN 2213-1779/\$36.00

Noriko Iida, BA, a Yoshihiro Seo, MD, b Seika Sai, MD, b Tomoko Machino-Ohtsuka, MD, b Masayoshi Yamamoto, MD, b Tomoko Ishizu, MD, b Yasushi Kawakami, MD, Kazutaka Aonuma, MD Carabana, M

What should we ask when we approach CRS?

- Volume status of the patient?
- Is the Blood Pressure adequate for renal perfusion?
- What is the Cardiac output?
- What is the Central Venous Pressure? (JVP)
- Is there intrinsic renal disease?


Pre-diuretic Era

- → Venesection
- → Scarification
- →Sweating utilizing hot air bath or warm water bath
- → Schwartz in 1930 discovered that Sulfonamide has Na secretion property and used for edema in CHF

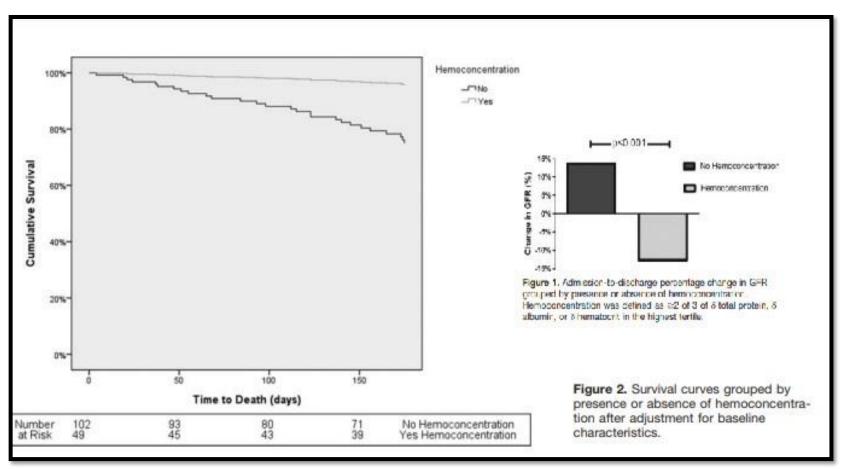
Diuretic Strategies in Patients with ADHF

The NEW ENGLAND
JOURNAL of MEDICINE

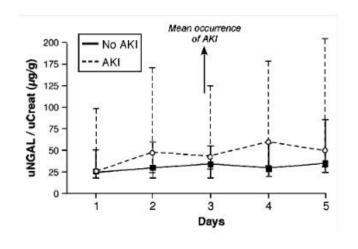
Diuretic Strategies in Patients with Acute Decompensated

G. Michael Feller, M.D., Mrid, S. Kery, L. Lee, Ph.D., Doudel, Bull, M.D., Margareth Forfeienk, M.J., Spring W. Stowner, M.D., Sower, G. Goldwart, M.D., Martin H., Kernier, M.D., And Devella M.D., M.J. Jona I., Rainker, M.D., (Elzabeth, O.D.R., M.D., M.P.H., Kernie) Anstrone, Ph.D., Admire Hersensker, M.D., Stement, M.P.M.J. St., Kr.; V. Sittegaren, M.D., Sandharf, K. Saw, M.D., Henger, C. Kom, H. M.D., McCarell, M. Gorett, M.D., Marcj. Seriegum, M.D., Sandharf, K. Saw, M.D., Henger, C. Kom, M.R., Digwer Barnacol M.D., and Charalphow C. Correcce, M.D., Sugaren Barnacol M.D., and Sugaren Charalphow C. Sugaren

Aggressive diuresis Improved Survival


Heart Failure

(Circulation, 2010;122:265-272.)


Potential Effects of Aggressive Decongestion During the Treatment of Decompensated Heart Failure on Renal Function and Survival

Jeffrey M. Testani, MD; Jennifer Chen, BS; Brian D. McCauley, BS; Stephen E. Kimmel, MD, MSCE; Richard P. Shannon, MD

Aggressive Diuresis in ADHF

Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure

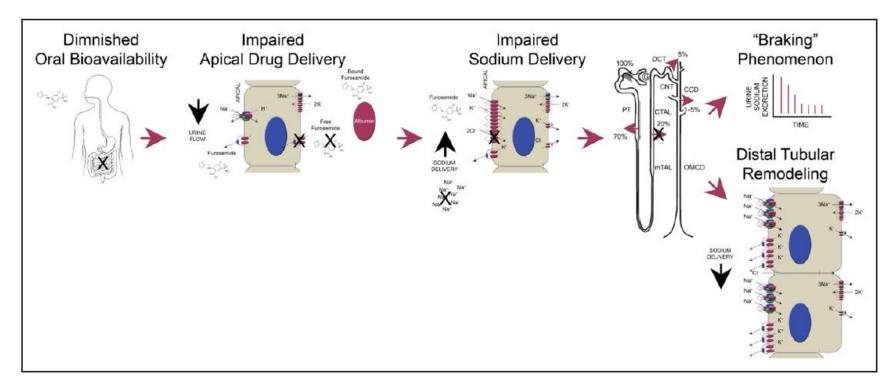
Matthias Dupont¹, Kevin Shrestha¹, Dhssraj Singh¹, Adiveh Awad², Cynthia Kovach², Mario Scarcipino², Anjli P. Maroo², and W.H. Wilson Tang¹*

¹Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, OH 44195, USA; and ²Fairview Hospital, Cleveland, OH, USA

Received 23 November 2011; revised 27 December 2011; accepted 19 February 2012; online publish-ahead-of-print 14 April 2012

Diuretic Resistance

No Consensus on definition of diuretic resistance


- → Poor response to diuretic therapy
- → Persistent Signs and symptoms despite diuretic therapy
- → Furosemide > 80 mg Vs 120 mg
- → Fractional Sodium Excretion < 0.2%
- → Failure to excrete at least 90 mmol of sodium within 72 hours of 160 mg oral Furosemide BID
- → Lack of Weight loss during IV loop diuretic therapy
- → Lack of negative fluid balance with Loop diuretic therapy

Management of Diuretic Resistance in Heart Failure

- Restriction of daily fluid intake (1.0 to 1.5 L) and moderate restriction of daily salt intake (<5 g)
- Avoidance of nonsteroidal anti-inflammatory drugs (NSAIDs)
- Institution of ACE inhibition (start with small doses, such as captopril 6.25 mg three times per day, lisinopril or enalapril 2.5 mg daily, or ramipril 1.25 mg daily)
- Avoid overly aggressive vasodilator therapy that reduces mean arterial pressure below that necessary for renal perfusion
- Oral administration of a short-acting loop diuretic in several divided (and increasing) doses (eg, furosemide 40 to 80 mg two to three times per day), bolus intravenous administration (eg, furosemide 20 to 40 mg three times per day), or continuous intravenous infusion (furosemide 5 to 20 mg/hour)
- Sequential nephron blockade by combination of a loop diuretic and a thiazide (eg, hydrochlorothiazide 25 mg or metolazone 2.5 mg daily)
- Addition of small doses of spironolactone (12.5 to 25 mg/ day) with ACE inhibitors, or larger doses (50 to 100 mg/ day) in the absence of ACE inhibition
- Consider short-term addition of acetazolamide in selected patients

Mechanisms of diuretic Resistance

Evidence Table of RCTs Comparing Pharmacological Therapy for Fluid Overload and Ultrafiltration in Patients With Acute Decompensated HF

Study	Subjects, n	Primary End Point	UF Protocol	Diuretics Protocol	Effect on Renal Function	Effect on Weight Loss	Adverse Events
RAPID-CHF ¹³³	40	Weight loss at 24 h	Single 8-h UF session to maximum rate of 500 mL/min per 1.73 m ²	Clinician based	NS	Similar in both groups; trend toward higher weight loss in UF arm	(SANA)
UNLOAD ¹³⁴	200	Weight loss and dyspnea at 48 h	Time and rate of UF flexible; maximum rate of 500 mL/min per 1.73 m ²	Clinician based	NS	UF>DT	
CARRESS-HF ¹³⁵	188	Change in SCr and weight at 96 h	Fixed UF rate of 200 mL/min per 1.73 m ²	Prespecified stepped-up algorithm	Significant increase in SCr with UF	Similar in both groups	Higher SAEs in UF arm
CUORE ¹³⁶	56	Hospitalization for HF at 1 y	Time and rate of UF flexible; maximum rate of 500 mL/min per 1.73 m ²	Clinician based	Significant increase in SCr with DT at 6 mo	Similar in both groups	
AVOID-HF*137	224	Time to HF <90 d after discharge	Time and rate of UF flexible; maximum rate of 500 mL/min per 1.73 m ²	Prespecified algorithm	NS	Similar in both groups	Higher SAEs in UF arm

Rangaswami J et al., Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies. A scientific Statement From the American Heart Association. Circulation. 2019; 139: e840-e878.

Ultrafiltration in Heart Failure

Vasoactive Agents in CRS

- Dopamine
 - ROSE-HF & DAD-HF II Showed no benefit of low dose Dopamine
- Nesiritide
 - ASCEND-HF showed no difference in WRF between Nesiritide and Placebo
- Dobutamine or Milrinone
 - No benefit shown in terms of diuresis or renal function



Vasoactive Agents in CRS

- Vasopressin Antagonist
 - EVEREST: similar rates of adverse events with greater degree of weight reduction in Tolvaptan arm
 - SECRET of CHF trial: No improvement in dyspnea
- Dobutamine or Milrinone
 - No benefit shown in terms of diuresis or renal function
- Levosimendan & Omecamptive Mecarbil
 - Insufficient or Limited data in the context of CRS

Clinical Phenotypes – AKI in Cardiogenic shock

Heart Failure Reviews (2021) 26:487-496 https://doi.org/10.1007/s10741-020-10034-0

Pre-Renal	Intrinsic	Post-renal
← Cardiac Output		◆ CVP Systemic Congestion
SNS: Vaso Constriction	SNS: RAAS activation	Papillary necrosis & Ureteral Obstruction

Mispositioning of devices

Contrast administration

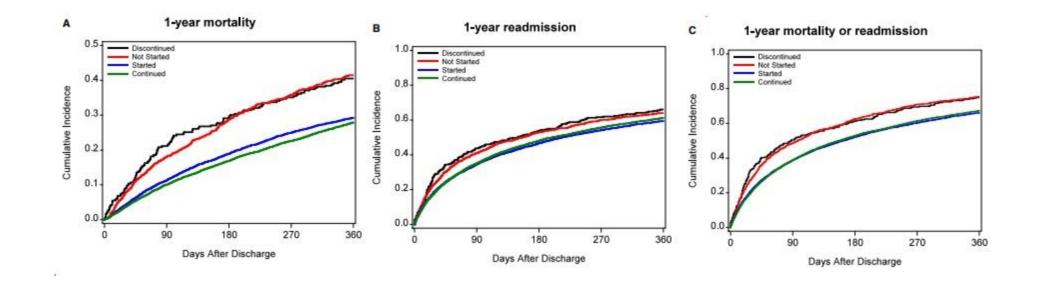
Nephrotoxic agents

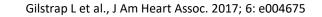
Excess Intrathoracic Pressure during Mechanical ventilation

CARRIOLOGYS

Cardiogenion the exception

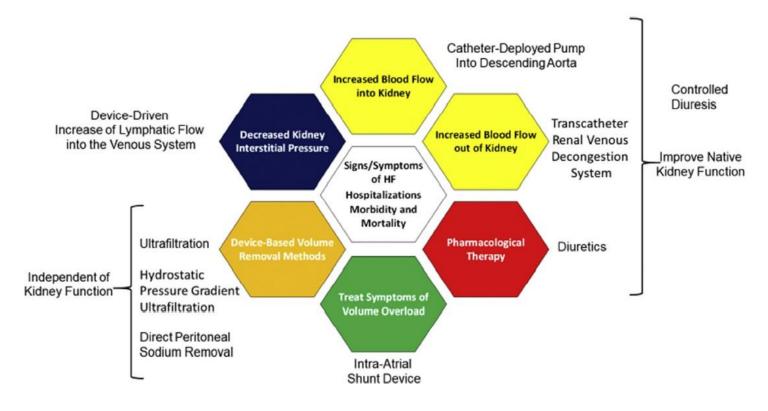
Importar shock res support t


Andrew I. Ab Jai Radhakrisl Paolo Colomb Hiroo Takayana,


Characteristics	OR (95% CI)	P value	Multivariable OR (95% CI)	P value
Age	1.00 (0.99-1.02)	.652		
BMI	1.02 (0.99-1.06)	.241		
Medical history				
CAD	1.30 (0.81-2.09)	.274		
HLD	1.39 (0.86-2.24)	.180	1.25 (0.68-2.27)	.474
HTN	1.51 (0.94-2.43)	.090	1.04 (0.57-1.92)	.893
DM	1.17 (0.70-1.94)	.551		
COPD	0.78 (0.32-1.89)	.583		
Prior CVA	4.08 (1.62-10.25)	.003	3.10 (1.14-8.42)	.026
CKD	1.92 (1.10-3.33)	.021	1.42 (0.74-2.73)	.290
Preoperative status				
Cause		.089		.367
1-PCS	Reference	520	Reference	121
2-AMI*	0.42 (0.22-0.80)	.008	0.45 (0.22-0.92)	.028
3-Graft*	0.73 (0.33-1.60)	.431	0.55 (0.23-1.35)	.195
4-ADHF*	0.51 (0.25-1.05)	.066	0.44 (0.19-1.02)	.056
5-Other*	0.60 (0.27-1.30)	.194	0.55 (0.23-1.30)	.172
MAP	0.99 (0.98-1.00)	.240		
Hemoglobin	0.83 (0.74-0.93)	.001	0.90 (0.80-1.03)	.130
Baseline creatinine	1.74 (1.29-2.35)	.000	1.53 (1.10-2.13)	.012
ALT	1.00 (1.00-1.00)	.037	1.00 (1.00-1.00)	.067
IABP	0.95 (0.59-1.52)	.827		
Active CPR	1.29 (0.72-2.34)	.392		
Device (CentriMag = 0 , ECMO = 1)	1.72 (1.06-2.78)	.028	1.60 (0.93-2.75)	.087

CrossMark

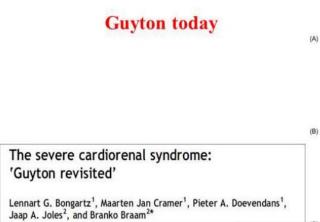
Initiation or Continuation of RAAS agents during ADHF



GDMT in HFrEF with Renal dysfunction

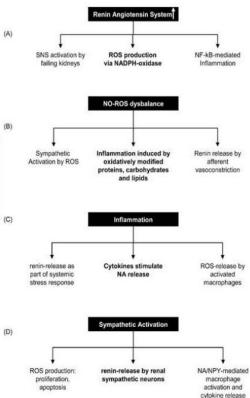
CRT	Strong	Strong	Absent
ICD	Strong	Strong	Weak
H-ISDN	Weak	Weak	Absent
Digoxin	Weak	Weak	Weak
Ivabradine	Moderate	Moderate	Absent
β-blocker	Strong	Strong	Moderate
MRA	Strong	Strong	Absent
ARNi	Strong	Strong	Absent
ACE inhibitor/ARB	Strong	Strong	Weak
Diuretics	Absent	Absent	Absent
	CKD 1 and 2	CKD 3	CKD 4 and 5

Future Directions

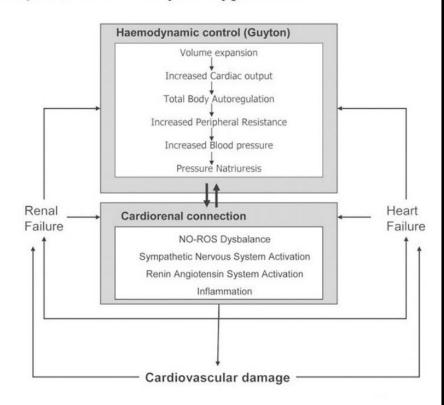


Costanza MR., The Cardiorenal Syndrome in Heart Failure. Cardiol Clin 40 (2022) 219–235 https://doi.org/10.1016/j.ccl.2021.12.010

Conclusion

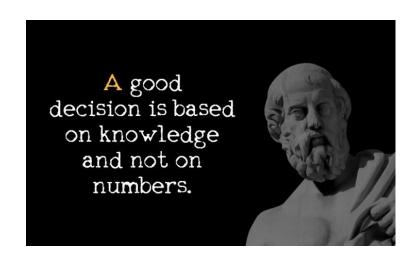


- Heart Failure and Renal disease frequently coexist
 - Bidirectional
 - Temporally regulated
 - Mediated by multiple mechanisms
 - Heterogeneity in clinical manifestations
 - Functional Vs structural damage
 - May affect other organs
- Associated with poor prognosis
- Management is Challenging
- Recognition of this syndrome is essential for institution of appropriate management strategies



European Heart Journal (2005) 26, 11-17

doi:10.1093/eurheartj/ehi020


Guyton, 1955 Guyton hypothesis

Limitations

- Significant inherent heterogeneity within the classes of CRS
- Lack of mechanistic framework

